101 research outputs found

    "What Do They Want Me To Say?" The hidden curriculum at work in the medical school selection process: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been little study of the role of the essay question in selection for medical school. The purpose of this study was to obtain a better understanding of how applicants approached the essay questions used in selection at our medical school in 2007.</p> <p>Methods</p> <p>The authors conducted a qualitative analysis of 210 essays written as part of the medical school admissions process, and developed a conceptual framework to describe the relationships, ideas and concepts observed in the data.</p> <p>Results</p> <p>Findings of this analysis were confirmed in interviews with applicants and assessors. Analysis revealed a tension between "genuine" and "expected" responses that we believe applicants experience when choosing how to answer questions in the admissions process. A theory named "What do they want me to say?" was developed to describe the ways in which applicants modulate their responses to conform to their expectations of the selection process; the elements of this theory were confirmed in interviews with applicants and assessors.</p> <p>Conclusions</p> <p>This work suggests the existence of a "hidden curriculum of admissions" and demonstrates that the process of selection has a strong influence on applicant response. This paper suggests ways that selection might be modified to address this effect. Studies such as this can help us to appreciate the unintended consequences of admissions processes and can identify ways to make the selection process more consistent, transparent and fair.</p

    The effectiveness of classroom vocabulary intervention for adolescents with language disorder

    Get PDF
    Purpose Phonological-semantic intervention has been shown to be effective in enhancing the vocabulary skills of children with language disorder in small-group or individual settings. Less is known about vocabulary interventions for adolescents with language disorder in whole-class models of delivery. The current study investigated the effectiveness of phonological-semantic vocabulary intervention for adolescents with language disorder, delivered by secondary school teachers within science lessons. Methods Seventy-eight adolescents with language disorder, aged 11 – 13 years, were taught science curriculum words by teachers in class, under two conditions: 1) 10 words taught through usual teaching practice; and 2) 10 matched words taught using an experimental intervention known as Word Discovery, which embedded phonological-semantic activities into the teaching of the syllabus. Ten similar control words received no intervention. Word knowledge was assessed pre-intervention, post-intervention, and follow-up. Results At pre-intervention, measures of depth of word knowledge and expressive word use did not differ between usual teaching practice and experimental words. At post-intervention, depth of knowledge of experimental words was significantly greater than that of usual teaching practice words. This significant advantage was not maintained at follow-up, although depth of knowledge for experimental words remained significantly higher at follow-up than at preintervention. At post-intervention, expressive use of experimental words was significantly greater than that of usual teaching practice words, and this significant difference was maintained at follow-up. There was no change in students’ depth of knowledge or expressive use of no-intervention words over time, confirming that the findings were not due to maturity or practice effects. Conclusion The experimental intervention was more effective than usual teaching practice in increasing the word knowledge of participants. Clinical and teaching implications include the importance of intervening during the adolescent years, with classroom vocabulary intervention being a viable option for collaborative teacher and speech and language therapy/pathology practice

    Weight-Loss Maintenance in Overweight Individuals One to Five Years Following Successful Completion of a Commercial Weight Loss Program

    Get PDF
    OBJECTIVE: To determine weight loss maintenance among participants in a commercial weight loss program (Weight Watchers) who had reached their goal weights 1-5 y previously. DESIGN: A national sample (n=1002) was surveyed by phone to obtain demographic and weight-related information. An oversample (n=258) was recruited and weighed in person to develop a correction factor for self-reported weights in the national sample. RESULTS: Based on corrected weights, weight regain from 1 to 5 y following weight loss ranged between 31.5 and 76.5%. At 5 y, 19.4% were within 5 lb of goal weight, 42.6% maintained a loss of 5% or more, 18.8% maintained a loss of 10% or more, and 70.3% were below initial weight. CONCLUSIONS: These results are not directly comparable to those obtained in clinical settings because of differences in the populations studied. Nonetheless, they suggest that the long-term prognosis for weight maintenance among individuals who reach goal weight in at least one commercial program is better than that suggested by existing research

    Phone and e-mail counselling are effective for weight management in an overweight working population: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The work setting provides an opportunity to introduce overweight (i.e., Body Mass Index ≄ 25 kg/m<sup>2</sup>) adults to a weight management programme, but new approaches are needed in this setting. The main purpose of this study was to investigate the effectiveness of lifestyle counselling by phone or e-mail on body weight, in an overweight working population. Secondary purposes were to establish effects on waist circumference and lifestyle behaviours, and to assess which communication method is the most effective.</p> <p>Methods</p> <p>A randomized controlled trial with three treatments: intervention materials with phone counselling (phone group); a web-based intervention with e-mail counselling (internet group); and usual care, i.e. lifestyle brochures (control group). The interventions used lifestyle modification and lasted a maximum of six months. Subjects were 1386 employees, recruited from seven companies (67% male; mean age 43 (SD 8.6) y; mean BMI 29.6 (SD 3.5) kg/m<sup>2</sup>). Body weight was measured by research personnel and by questionnaire. Secondary outcomes fat, fruit and vegetable intake, physical activity and waist circumference were assessed by questionnaire. Measurements were done at baseline and after six months. Missing body weight was multiply imputed.</p> <p>Results</p> <p>Body weight reduced 1.5 kg (95% CI -2.2;-0.8, p < 0.001) in the phone group and 0.6 kg (95% CI -1.3; -0.01, p = 0.045) in the internet group, compared with controls. In completers analyses, weight and waist circumference in the phone group were reduced with 1.6 kg (95% CI -2.2;-1.0, p < 0.001) and 1.9 cm (95% CI -2.7;-1.0, p < 0.001) respectively, fat intake decreased with 1 fatpoint (1 to 4 grams)/day (95% CI -1.7;-0.2, p = 0.01) and physical activity increased with 866 METminutes/week (95% CI 203;1530, p = 0.01), compared with controls. The internet intervention resulted in a weight loss of 1.1 kg (95% CI -1.7;-0.5, p < 0.001) and a reduction in waist circumference of 1.2 cm (95% CI -2.1;-0.4, p = 0.01), in comparison with usual care. The phone group appeared to have more and larger changes than the internet group, but comparisons revealed no significant differences.</p> <p>Conclusion</p> <p>Lifestyle counselling by phone and e-mail is effective for weight management in overweight employees and shows potential for use in the work setting.</p> <p>Trial registration</p> <p>ISCRTN04265725.</p

    Avoidable mortality across Canada from 1975 to 1999

    Get PDF
    BACKGROUND: The concept of 'avoidable' mortality (AM) has been proposed as a performance measure of health care systems. In this study we examined mortality in five geographic regions of Canada from 1975 to 1999 for previously defined avoidable disease groups that are amenable to medical care and public health. These trends were compared to mortality from other causes. METHODS: National and regional age-standardized mortality rates for ages less than 65 years were estimated for avoidable and other causes of death for consecutive periods (1975–1979, 1980–1985, 1985–1989, 1990–1994, and 1995–1999). The proportion of all-cause mortality attributable to avoidable causes was also determined. RESULTS: From 1975–1979 to 1995–1999, the AM decrease (46.9%) was more pronounced compared to mortality from other causes (24.9%). There were persistent regional AM differences, with consistently lower AM in Ontario and British Columbia compared to the Atlantic, Quebec, and Prairies regions. This trend was not apparent when mortality from other causes was examined. Injuries, ischaemic heart disease, and lung cancer strongly influenced the overall AM trends. CONCLUSION: The regional differences in mortality for ages less than 65 years was attributable to causes of death amenable to medical care and public health, especially from causes responsive to public health

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p

    Epigenetics and airways disease

    Get PDF
    Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging
    • 

    corecore